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Consistent Relations in the Method of Reducibility in 
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A redundancy is noted in the set of Lagrange multipliers--effective fields and 
effective interactions--used in the expressions of the reduced density matrices 
given by Morita (4) in some problems with less symmetry. (6) The expressions of 
the reduced density matrices without this redundancy are given. An argument 
showing that a certain expression of the free energy in terms of the Lagrange 
multipliers is stationary with respect to the variations of these is presented. 
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1. I N T R O D U C T I O N  

The cluster variation method (1) presents an approximate method which 
gives the properties of the Ising model and the Heisenberg model. In that 
method, an approximate free energy of the system is expressed in terms of 
the reduced density matrices, and the reduced density matrices are deter- 
mined by the minimum of that expression of the free energy, where the 
variations are taken with the restriction that the reduced density matrices 
should satisfy the reducibility relations between them. (2'3) 

In the general condition, the variation was taken by the author, (4) 
introducing a Lagrange multiplier for each of the restrictions. In the result 
of the variational calculation, the reduced density matrices are expressed in 
terms of the Lagrange multipliers, each of which is interpreted as an 
effective field or an effective interaction, and these are determined by the 
reducibility of the reduced density matrices. 

This method of the reducibility manifested to be a convenient starting 
point in getting the result of an approximation in the cluster variation 
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method, for a simple ferromagnet or antiferromagnet. (5) However, in apply- 
ing it to the Ising model with an antiferromagnetic interaction on the fcc 
lattice, Fujiki (6) found that there are cases where the number of the 
consistent relations in the reducibility condition is less than the number of 
Lagrange multipliers or the effective fields and effective interactions. In 
those cases, the number of the linearly independent expressions of the 
linear combinations of a set of Lagrange multipliers expressing the reduced 
density matrices is less than the total number of the Lagrange multipliers in 
the set. That is, the reduced density matrices are determined by the linearly 
independent expressions, before all the Lagrange multipliers are deter- 
mined. Although we get the correct result of the cluster variation method 
without determining undetermined Lagrange multipliers, it is not conve- 
nient to have redundant Lagrange multipliers. In the present paper, an 
improved recipe is given of the method of reducibility in the cluster 
variation method. 

In previous papers, (3'4) it is stated that the Lagrange multipliers can be 
determined by the stationariness with respect to their variations of a certain 
expression of the free energy. An argument showing this fact was given in a 
footnote of Ref. 3 only for the most simple case. An argument showing this 
fact for the present case is given in Section 5. The obtained results are 
summarized in Section 6. An example is given in Section 7. 

Notations follow Ref. 4, if not stated otherwise. For example, n C_ m 
and n c m are used to indicate that n is a subcluster and a proper 
subcluster of m, respectively. 

2. VARIATIONAL FUNCTION 

An approximation in the cluster variation method is characterized by a 
set of preserved clusters M i of sites. We consider the clusters M i and the 
common parts of two, three . . . .  of Mi's, that is, 34,., Mi n Mj, Mi n Mj n 
M k . . . . .  We denote the set of all these clusters, excluding the cluster 
having no sites, by U. We assume that the Hamiltonian of the system H is 
expressed as a sum of contributions ht(n) of the clusters n belonging to U: 

H = ~ t h t ( n )  (2.1) 
n 

where t above the summation sign denotes the restriction n e U. In the 
method, the approximate free energy is expressed in terms of the reduced 
density matrices of the clusters belonging to U. 

The approximate free energy is given by 

F = ~ttrnp(n)ht(n) + ~tyt(n ) (2.2) 
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where yt(n)  is defined by 

F(m) = kTtrmp(m) lnp(m)  

and 

(2.3) 

r(m) = E t ~,t(n) (2.4) 
n 

(n c_ m) 

Here k is the Boltzmann constant, T is the temperature, and p(m) is the 
reduced density matrix for the cluster m. If m has no proper subcluster 
included in U, 7 t ( m ) =  F(m) and if otherwise (2.4) is written as 7t(rn) 
= I ' (m) - x'~ , ~n~, which is used to get 7t(m), recursively. ~2an(nCm)~ \ ] 

In the cluster variation method, the reduced density matrices p(m) are 
so determined that F defined by (2.2)-(2.4) is stationary with respect to the 
variations of p(m), where the reducibility relations and the normalization 
conditions are required. The reducibility relations required are 

p(m ' )  = trm\m,p(m ) ( 2 . 5 )  

between those clusters m and m'  that m ~ U, m '  E U, m'  c m and there is 
no rn" such that m" E U and m'  c m" c m. The normalization conditions 
a r e  

trmP(m ) = 1 (2.6) 

for m belonging to U. 

3. INDEPENDENT SET OF REDUCIBILITY CONDITIONS 

We introduce a linearly independent set of operators for a cluster m 
belonging to U, in such a way that the set involves the set for every cluster 
n which is a subcluster of rn and belongs to U. The set involves the operator 
1. An operator in the set is denoted by Q](n) if it is involved in the set for 
the cluster n but is not equal to unity nor involved in the set for any of its 
subclusters included in U; v is used to distinguish different ones satisfying 
this condition. 

In Ref. 4, a Lagrange multiplier ?~(m - m'; rn') is introduced to secure 
the reducibility (2.5) of the reduced density matrix for the cluster m to that 
for rn' if m E U, m'  ~ U, m'  C m, and there is no m" such that m" ~ U and 
m t C m "  C m .  

If we use the complete set of linearly independent operators Q](n), 
(2.5) is equivalent to the set of conditions: 

tr m, O?(n)p(m')  = trmO](n)p(m ) (3.1) 

for all the subclusters n of m, satisfying n ~ U and n C_ m', if the normaliza- 
tions of p(m') and p(m) are secured. 
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In a study applying the method of reducibility to an antiferromagnetic 
Ising model on the fcc lattice, Fujiki (6) found a redundancy in the La- 
grange multipliers. It occurs for the Lagrange multipliers for (3.1) when 
there is another cluster m" such that m" ~ U and n c m" c m. Then we 
have a reducibility of p(m') to o(n), p(m") to p(n) and also o(m) to p(m"), 
so that 

t trnO](n)o(n) = trm, Q, (n)o(m ) (3.2) 

trn Q] (n)o(n) = trm,, O] (n)o(m") (3.3) 

trm,, Q] (n)p(m" ) = trmQT (n)p(m ) (3.4) 

When we include (3.2) and (3.3) in the set of subsidiary conditions, we have 
only to include one of (3.1) and (3.4), and then the other is automatically 
satisfied. Hence we can discard it from the set of subsidiary conditions. An 
alternative way is to use 

tr n Q](n)p(n) = tr m Q](n)p(m) (3.5) 

along with (3.2) and (3.3), since (3.1) and (3.4) are automatically satisfied if 
(3.2), (3.3), and (3.5) are satisfied. 

In summary, we have only to introduce Lagrange multipliers X~(m - 
n,n) for the consistency conditions (3.5) for all n and all m satisfying 
n ~ U, m ~ U and n C m. In addition to these, we have the Lagrange 
multipliers f~(m) to secure the normalization conditions (2.6). 

4. VARIATIONAL CALCULATION 

We introduce the Lagrange multipliers X~(m - n, n) and ft(m) for the 
subsidiary conditions (3.5) and (2.6), respectively, and rewrite the varia- 
tional function given by (2.2) as follows: 

3-= ~ttrnpt(n)[ht(n ) + ht(n)- ft(n)] + ~t[yt(n) + ft(n)], (4.1) 

where 7t(n) here is defined by (2.3) and (2.4) if p(m) in (2.3) are replaced 
by p,(m), and ht(n) are defined by 

X * ( n ) = -  2 t EX~(n-  n',n')Q](n') + ~'t EX~(m_ n,n)Qt(n) 
n I p m P 

(n'Cn) (mDn) 

(4.2) 
Here the variations are to be taken with respect to pt(m). 

We shall rewrite (4.1) by adding ~ ( m  - n, n) andf~(n) some adequate 
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constants as follows: 

Y = ~n t tr,Pt(n) [ h t (n) + )~t(n) + kTln gt (n) -- f t ( n )  ] 

+ E r [~,3(n) + f t ( n ) ]  (4.3) 
n 

where ],3(n) are defined by 

r3(m ) = kTtrmot(m)[lnp,(m ) - lno(m)  - 1] + kY (4.4) 

V3(m ) = ~-]r T3(n) (4.5) 
n 

(n c_ m) 

and in gt(n) are defined by 

lnp(m) = ~-]t In gt(n) (4.6) 
n 

(nC_m) 

Here p(m) are the functions to be determined as p,(m) which make 3 -  
stationary. 

The result of the variation is 

p(m) = e x p ( f l I r ( m )  - H(m) - A(m)] } (4.7) 

where 

F(m) = ~-]t f t ( n  ) (4.8) 
n 

(nC_m) 

A(m) = ~ t  ~F ~ h t ( m , _  n,n)Qt(n) (4.9) 
n m t p 

(nCm) (m'~n) 
(m' f~ m) 

(4.9) is obtained by using (4.2) in A ( m ) =  ~']tnC_m~kt(/7 ). In order to deter- 
mine the Lagrange multipliers, we use the normalization (2.6) for F(m) and 
the relation (3.5) for ~ ( m  - n, n). We then use (4.8) to getf t (n)  and obtain 
the free energy of the system F by 

g = ~-],t f t ( n )  (4.10) 
n 

In determining ~ ( m  - n, n), we may use the condition of the reducibil- 
ity (2.5). The set of (3.5) gives all that are required to secure (2.5). The 
argument in the preceding section shows that the set of (2.5) may have 
redundant equations which are automatically satisfied when the others are 
satisfied. 
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5. STATIONARINESS WITH RESPECT TO THE VARIATIONS OF 
LAGRANGE MULTIPLIERS 

The variational free energy (4.3) is a function of or(m), X~(m - n, n) 
and ft(n). The conditions determining these are stationariness conditions: 

6 ~  _ 0 (5.1) 
6p,(m) 

with the subsidiary conditions (3.5) and (2.6). The latter are written as 

3 ( J -  given by (4.3)} 
= 0 ( 5 . 2 )  

OX~(m - n, n) 

~ ( 3 -  given by (4.3)} = 0 (5.3) 

of*(.) 
We shall obtain or(m) and f~(m) by conditions (5.1) and (5.3). Then the 
obtained or(m) and f t (m) are functions of 2t~(m - n, n). We shall substitute 
them into (4.3) in place of pr(m) andre(m). The obtained ~ -  is a function 
of 2 ~ ( m -  n, n) partly explicitly and partly implicitly through p,(m) and 
if(m). We shall refer this as to ~-B. Then 

~J-B 

a2t~(rn - n,n) 
(m'3_ n) 

(m' ~ m) 

6JB ] OPt(re') 

60,(m') x:,f~. O;k-t,,(m -- n, n) 

t 
+ ak~ (~- --- n, n) O,,f* (5.4) 

where the variations of YB on the right-hand side are taken with fixed 
values of Or(m), X~(m- n,n) and ft(n) except the one of which the 
variation is taken. Since the variations of YB in the summand on the 
right-hand side in (5.4) are zero, condition (5.2), that is zero of the last term 
of the right-hand side, is equivalent to 

~ J B  
= 0 (5 .5 )  

aX~(m - n, n) 

Condition (5.1) gives (4.7) for o(m), and (5.3) is equivalent to (2.6), 
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which determines F(m) as follows: 

exp[ - f lF(m)]=trmexp{ - f l [H(m)+ A(m)]  } (5.6) 

We substitute (4.7) and (5.6) into (4.3) and obtain J - 8 ,  that is equal to 

J~B = ~]tf#(n) (5.7) 
n 

The above argument shows that if ft(n) are calculated by (4.8) and (5.6), 
X t ( m -  n, n) must be determined by the stationariness condition (5.5) of 
J-B given by (5.7). The resulting value of J-B must be equal to the free 
energy given by (4.10). 

6. S U M M A R Y  

In a certain approximation of the cluster variation method, we choose 
a set of preserved clusters M i and construct the set U of their common 
parts. The Hamiltonian is assumed to be given by the sum of contributions 
ht(n) of clusters n belonging to the set U, as (2.1). For each cluster m 
belonging to U, a set of operators Q](m) is introduced such that the set of 
Q](rn) along with unity and the sets Q](n) for all proper subclusters n of m, 
belonging to U, constitutes a complete set of operators for the cluster m. 

When n and m belong to U and n is a proper subcluster of m, an 
effective field or an effective interaction )~(m - n, n)Q](n) is introduced to 
secure the consistency of the average for each of Q](n). The reduced 
density matrices p(m) for m belonging to U are then given by (4.7) with 
(4.9). (4.9) states that the effective fields and effective interactions in p(m) 
are to subclusters n of m, belonging to U, from such clusters m', that m' 
belongs to U, n is a subcluster of m' and m' is not a subcluster of m. F(m) 
are given in terms of the set of X~(m - n, n) by the normalization condition, 
that is, (2.6) or (5.6). In the method of reducibility, the effective fields and 
effective interactions )~(rn - n, n) are determined by the consistency rela- 
tions (3.5). Then F(m) are calculated by (5.6) and the free energy of the 
system is given by (4.10) and (4.8). In the method using the stationariness 
condition, from the expression of F(m) in terms of the set of )~(m - n, n), 
we calculate J ~  by (5.7) and (4.8). By the condition of stationariness (5.5) 
of this expression with respect to the variations of )t~(rn - n, n), we can 
determine these. The stationary value of ~-8 gives the free energy of the 
system. 

7, E X A M P L E  

As an example, we consider the Heisenberg model on the rectangular 
lattice in the rectangle approximation, where all the basic rectangles are 
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preserved clusters. The directions along the edges of the rectangles are 
called the x and y directions. The Hamiltonian is 

14 = -  hsiz- Y ,  Josi. (7.1) 
i i > j  

( i , j  : n .  n) 

where h is the external field and Jo is J~ or Jy according to whether i and j 
are nearest neighbors in the direction parallel to the x or y direction. As the 
set of common parts of the basic rectangles, U is the set of sites, nearest 
neighbor pairs of sites, and basic rectangles. We assume that the system is 
in the ferromagnetic or paramagnetic state and the magnetization is in the z 
direction. 

The reduced density matrix o(m) for each m which is an element of U 
is expressed in the form of (4.7). When m is a site, o(m) is expressed as 
O(l~(s) as a function of the spin variable s for the site. The set ( Qfim)} for 
the site is {sz,s~,sy }, and H ( m ) - -  - h s z .  The sum (4.9) is obtained as 
follows: When m is a site, n satisfying n c_ m and n E U is only m itself, 
and we have only terms of Q](n)  = s z in the ferromagnetic or paramagnetic 
state. The X~(m' - n, n) for m', which is a pair of the site being considered 
and one of its two nearest neighbors in the x direction (y direction), is 
denoted by -X~ (-Xy), and the ~ ( m '  - n, n) for m', which is one of four 
basic rectangles involving the site being considered as a vertex, is denoted 
by -X' .  Then we have -(2X~ + 2Xy + 4X')sz for A(m) and 

p(l)(s) = exp{ fl[ F (1~ + (h + 2X x + 2Xy + 4X')s~l} (7.2) 

where F (l~ denotes F ( m )  for this case. 
We next consider a pair consisting of a site and one of its nearest 

neighbor sites in the x direction, for m. We express the spin variables for 
the two sites as s and s'. o(m) for this case is denoted by O(~2~(s,s'). H ( m )  is 

- h(s z + s') - J~s.  s'. In writing A(m) in (4.9), n is either one of the two 
sites consitituting m, or m itself. When n is the site for which the spin 
variable is s, we have only terms of Q](n)  = s~ ; m'  for this case are all those 
occurring in the previous case where m = n is a site, excluding m itself, and 
we have - (? t ,  + 2Xy + 4X')s~. When n is the other site, we have -(X~ + 
2Xy + 4X')s'. When n is m itself, the Q,(n)  which appear are s~s'~ and s .  s'. 
m' are two basic rectangles involving both sites of m as vertices. Writing 
X(m' - n, n) for each rectangle as -X2' and -X~", respectively, we have 
-2X'~'szs' ~ - 2X',"s. s' for A(m). As a result we have 

p(~2)(s,s') = exp( fi[Fx (2) + (h + X x + 2 ~  + 4X')(s~ + 4)  

+ 2x'%4 + + .s ' ]} (7.3) 

where F~ 2) denotes F(m)  for this case. In a similar way, for a pair of 
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nearest neighbor sites in the y direction, we have 

42) (S ,S  ') = exp( /3 [  Fy (2) + (h + 2X x + ~y + 43t')(s z + ss 

+ 2X~'sz4 + (Jy 4- 27t~")s " s ' ] }  (7.4) 

For  a basic rectangle, we have 

O(4)(s,s' ,s",s ''') = e x p { / 3 [ F  (4) + (h + X x + ~ + 3X')(s z + s; + s~' + s~") 

+ a ;  (szs; + Vs 7') + g: ( s y '  + siV) 

+ (Jx + + s" .s")  

+ (Jy + ~ " ) ( s  �9 s '"  + , ' .  , " ) ]  } (7.5) 

where F (4) is F ( m )  for the case that m is the basic rectangle. 
F (t), Fx(2), F(2) and f (4) a r e  determined by  the normalization (2.6) for 
n (2) n (2) and a(4)" p(l), vx ,r'y t" �9 

1 = Tro( ' ) ( s )  = Tro(xZ)(s,s ') = Tro(yZ)(s,s ') = Tro(4)(s ,s ' s" ,s  ''') (7.6) 

where Tr denotes the trace taken by  the variables occurring in the respec- 
tive operands.  The effective fields hx, Xy and X' are determined by  the 
consistency of the averages of s z : 

Tr SzO (I)(S) ----" Tr s~p(x2)(s, s') = Tr s~o(y2)(s, s') = T r  Szp(4)(s,  s t, s t', St") (7.7) 

The effective interactions )t x and X';,' are determined by  the consistency of 
the averages of szs" and s .  s': 

Tr szs'~o(~2)(s, s') = Tr szs;p(4)(s, s', s", s '") (7.8) 

Tr s .  s'o(~2)(s, s') = Tr s .  s'p(4)(s, s', s", s'") (7.9) 

and X)' and ky' by 

Tr s~s'~" o(yZ)(s, s" ')  = Tr s~S'z" O(4)(s, s', s", s'") (7.10) 

T r s .  s ' "42)(s , s ' "  ) = T r s .  s'"O(4)(s,s ' ,s",s ''') (7.1 t) 

We shall write f t ( n )  by f ( ' ) ,  f(2), fy(2) and f(4), when n is a site, a pair 
of nearest neighbors, one in the x direction and one in the y direction, and 
a basic rectangle, respectively. Then (4.8) reads 

F(,)  = f ( , ) ,  g(2) = 2f(,) + f}2), F),(2) = 2f(l) + fv(2) 
(7.12) 

g(4) = 4f(,) + 2f(2) + 2fy(2) + / (4 )  
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and then, by (4.10), the free energy per site is given by 

F / L =  F (', + ( F }  21-  2F  (l)) + (Fy  (21-  2F  ~l)) 

4- ( F  (4) - 2F} 21 - 2F) 21 + 4 F  (l)) (7.13) 

If F (~), F} 21, Fy (21, and F (41 a re  calculated as a function of the effective 
fields and effective interactions by using (7.2)-(7.5) and (7.6), but not using 
(7.7)-(7.1 1), they can be determined by the stationariness of (7.1 3). In place 
of (7.7)-(7.1 1), we can also write the conditions of reducibility: 

O(')(s) = trs,O(x2)(s,s'), O(1)(s) = tr,@2)(s,s ') 

p~(Z)(s, s') = tr,.,s,.O(4)(s, s', s ' ,  s'") 
(7.14) 

O~2)(s, s"') = tr,,,s,,p(4)(s, s', s ' ,  s'") 

where subscripts following tr denote the variables with respect to which the 
trace is to be taken. In fact, (7.7)-(7.111 are a set of independent relations 
equivalent to the set (7.141. 

If the formulations of Ref. 4 were adopted, 4X' in (7.2), 4X' in (7.3), 4X' 
in (7.4), and 3X' in (7.5) would be replaced by 0, 2X~, 2 ~  and X' x + X~, 
respectively. The effective fields in (7.2)-(7.5) would then be expressed in 
terms of three linear combinations X x + Xy, - h  x + 2X'x, and -Xy + 2X~; 
these are determined uniquely by the conditions (7.14), but Xx, ~y, X'~ and X~ 
can all not be determined. 

We considered the rectangular lattice. If the lattice is square and 
J~ = Jy, then we have four parameters X = X~ = X~, X', X" = X~' = X~', and 
h ' " =  X j '  = X'y" in the present formulation. The number of parameters in 
this case is the same also in the previous formulation. (41 
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